Automated detection and classification of invasive Cardiospermum grandiflorum using multispectral orthophotos and deep learning

Arthur Lamoliere

Research Support Officer - FAST Project Biodiversity & Ecology Research Group

L-Università ta' Malta Institute of Earth Systems

XV International Seminar "Biodiversity Management and Conservation" - Linguaglossa - Thursday, 8 June

Interreg

Fondo Europeo di Sviluppo Regionale European Regional Development Fund

FAST

Italia-Malta

UNIONE EUROPE

The Project

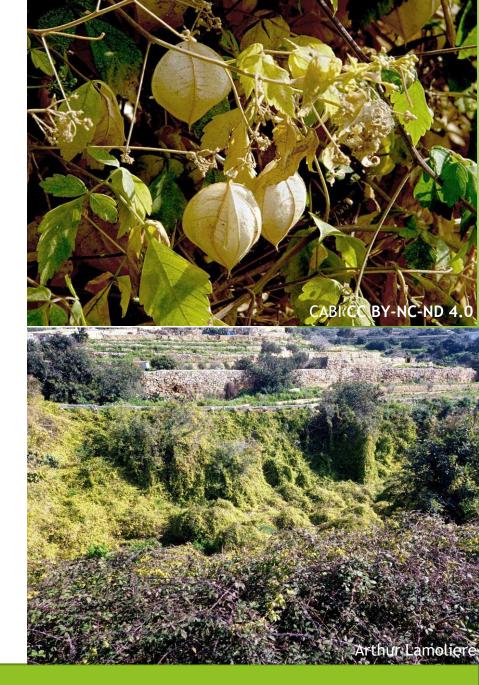
- Interreg FAST Project: Fight Alien Species Transborder
- Aims to combat the introduction, naturalization and spread of Invasive Alien Species.
- Work Package 3 : Focus on Non-Indigenous species monitoring
- Deliverables D.T1.2.2: Datavideo immagini drone
 - Detection and monitoring of Non-Indigenous species.
 - Monitoring of Invasive Alien Plant species using drones with spectral sensors.
- Case study: Monitoring spatial distribution of an IAPs in a Protected Natura 2000 site.

The Site

- Rdumijiet ta' Malta: Ir-Ramla taċ-Ċirkewwa sal-Ponta ta' Bengħisa SAC
 - Area of High Landscape Value
 - Area of Ecological Importance
 - Special Areas of Conservation International Importance
- Locality of Wied Babu

The Site

- Locality of Wied Babu
 - Mediterranean wadi: Valley system with temporary regime
 - > Typical coastal thermophilous vegetation colonising on the limestone steep.
 - Maquis at the bottom of the valley.
 - Patches of garrigue on the upper part of the slope
 - Thermo-Mediterranean and pre-desert scrub (Annex I 5330)
 - West Mediterranean clifftop phrygana (Annex I 5410)
 - Calcareous rocky slopes with chasmophytic vegetation (Annex I 8210)
- Presence of strict endemic species
 - Maltese Rock-Centaury (Cheirolophus crassifolius)
 - Maltese Pyramidal Orchid (Anacamptis urvilleana)


The problem

- Introduction of Cardiospermum grandiflorum Swartz, 1788.
 - Perennial, semi-woody vine-like climber, forms dense draping carpets.
 - Self-compatible seeds, large seed bank, anemochory & hydrochory.
 - Estimated the late 50s, using military imagery.
 - Introduction point identified upper, northern area of the Wied Babu watershed.

Joseph Buhagiar, Reeya Ghose Roy, Arthur Lamoliere, Marco Iannaccone (2021)

- Suspected, yet unassessed impact on the Maquis.
 - High propagule pressure, Light competition.
 - Spread downstream during the winter period.
 - Known Invasive Plant : EPPO A2 list & EU IAS of Union concern

The Aim

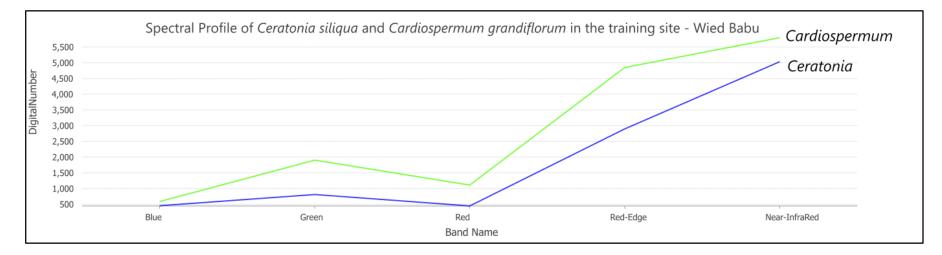
- ► How can we quantify the spread dynamics of *Cardiopermum grandiflorum* ?
 - Limited accessibility due to dense topography & vegetation:
 - Limits reliability of survey, detection bias.
 - Limited Spatial & Temporal resolution of satellite imagery:
 - Limits traditional remote sensing and mapping.
 - Limited Spectral resolution of Drone Imagery:
 - Poor Discrimination of vegetation cover at the species level.
 - The 50 shades of green problem.
 - ► The Solution ?
 - ▶ High-Resolution drone for Visual Survey.
 - Multispectral Drone for Mapping.
 - Deep Learning model for Automated Classification.

The Team

Key Word: Multidisciplinarity

Dream Team

- Field ecologists:
 - Ms Reeya Ghose Roy
 - Prof David Mifsud
- ► GIS specialists and Drone pilots:
 - Mr Gianmarco Tavilla
 - Prof Sandro Lanfranco
- ► AI specialists:
 - Mr Mark Mifsud
 - Prof John Abela


The Method

- Site Assessment & Ground Survey
 - Extensive cover, Dense mat at the introduction point
 - Sporadic records downward the valley
- Aerial survey using drones
 - Mavic Mini
 - ▶ Low altitude, High Spatial Resolution, RGB imagery.
 - Processed in WebODM.
 - ► Great output for visual interpretation, limited use for classification.
 - Phantom 4 Multispectral
 - ► Low altitude, High Spectral resolution, RGB + 2 Infra Red bands.
 - Processed in Aegisoft Metashape.
 - Great output for classification, limited for human interpretation!

The Method

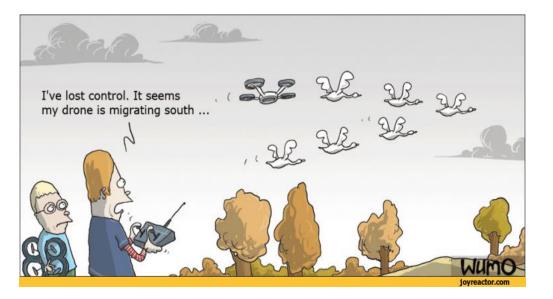
- Data Analysis: The 50 shades of green
 - C.grandiflorum has a brighter, paler shade of green than the surrounding vegetation, including Ceratonia siliqua.
 - Isolation based on the spectral signature, notably in the IR range.

- Several attempts using traditional classifiers
 - Unsupervised: K mean: Unsuccessful
 - Random forest: Poor discrimination

The Method

The Ultimate Solution: Deep Learning Models

- Moved away from GIS-based method to Machine Learning
- Identification and labelling of training sites
 - 3 Categories
 - ► Cardiospermum (10)
 - Ceratonia (1)
 - Other/Background (0)
- Training of the model
- Classification of each pixel using the Deep Learning Model
 - Different libraries explored
 - Open CV
 - TensorFlow
 - PyTorch



Preliminary results:

- Visual interpretation discriminates Cardiospermum grandiflorum based on pale light green foliage in visible light and high reflectance in the Red-Edge region.
- The Deep Learning model should be able to discriminate Cardiopspermum grandiflorum, Ceratonia siliqua, and the background.
- We anticipate the Deep Learning model to accurately detect the range of Cardiospermum grandiflorum within the study site.
- Provide a long-term solution to the ecological monitoring of the range of this Biological Invasion

The way forward

- Keep on training the selected model.
- Increase the extent of the study area.
- Validation of the model using ground truthing survey.

Thanks for you attention!

Any questions

Arthur Lamoliere <u>arthur.lamoliere@um.edu.mt</u> +356 9996 6641